Jump-diffusion CIR model and its applications in credit risk

نویسنده

  • Yongfeng Wu
چکیده

In this paper, the author discusses the distribution of the jump-diffusion CIR model (JCIR) and its applications in credit risk. Applying the piecewise deterministic Markov process theory and martingale theory, we first obtain the closed forms of the Laplace transforms for the distribution of the jump-diffusion CIR model and its integrated process. Based on the obtained Laplace transforms, we derive the pricing of the defaultable zero-coupon bond and the fair premium of a Credit Default Swap (CDS) in a reduced form model of credit risk. Some numerical calculations are also provided.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Option Pricing in the Presence of Operational Risk

In this paper we distinguish between operational risks depending on whether the operational risk naturally arises in the context of model risk. As the pricing model exposes itself to operational errors whenever it updates and improves its investment model and other related parameters. In this case, it is no longer optimal to implement the best model. Generally, an option is exercised in a jump-...

متن کامل

Efficient estimation of default correlation for multivariate jump-diffusion processes

Evaluation of default correlation is an important task in credit risk analysis. In many practical situations, it concerns the joint defaults of several correlated firms, the task that is reducible to a first passage time (FPT) problem. This task represents a great challenge for jump-diffusion processes (JDP), where except for very basic cases, there are no analytical solutions for such problems...

متن کامل

Hedging of Options in Jump-Diffusion Markets with Correlated Assets

We consider the hedging problem in a jump-diffusion market with correlated assets. For this purpose, we employ the locally risk-minimizing approach and obtain the hedging portfolio as a solution of a multidimensional system of linear equations. ‎This system shows that in a continuous market, independence and correlation assumptions of assets lead to the same locally risk-minimizing portfolio. ‎...

متن کامل

Pricing of Commodity Futures Contract by Using of Spot Price Jump-Diffusion Process

Futures contract is one of the most important derivatives that is used in financial markets in all over the world to buy or sell an asset or commodity in the future. Pricing of this tool depends on expected price of asset or commodity at the maturity date. According to this, theoretical futures pricing models try to find this expected price in order to use in the futures contract. So in this ar...

متن کامل

Computing hitting time densities for CIR and OU diffusions: applications to mean- reverting models

This paper provides explicit analytical characterizations for first hitting time densities for Cox–Ingersoll–Ross (CIR) and Ornstein–Uhlenbeck (OU) diffusions in terms of relevant Sturm–Liouville eigenfunction expansions. Starting with Vasicek (1977) and Cox, Ingersoll and Ross (1985), the Gaussian Ornstein– Uhlenbeck and Feller’s (1951) square-root diffusions are among the most commonly used s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014